
Sovr
Release 0.1

Reza Hasanzadeh

Dec 24, 2022

CONTENTS

1 Contents 3
1.1 Usage . 3
1.2 Compute Pods . 5

i

ii

Sovr, Release 0.1

Sovr Protocol integrates the Golem network’s compute prowess into the FairOS-DFS and the Swarm network’s storage
facilities. The whole idea revolves around the concept of compute pods. A compute pod is simply a set of files that
define how a Golem task should run, what are the inputs, outputs, and finally where the logs are going to be held.
All these files are finally stored in decentralized storage of the FaiOS-DFS and Swarm. The tool that is in charge of
persisting, sharing, and running compute pods is called the Sovr CLI.

To get your feet wet, check out the Usage section for further information about how to get started with the CLI and
necessary prerequisites to get it set up. To deep dive into the builiding blocks of the Sovr Protocol, please take a look
at the Compute Pods section.

Note: This project is under active development.

CONTENTS 1

Sovr, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Usage

1.1.1 Prerequisites

There are few steps that need to be done before using the CLI:

• Swarm

To setup the Swarm node, you need to consult https://docs.ethswarm.org/docs. Once your node is up, fund your
wallet(you can request funds from the Swarm discord), deploy a chequebook, and bingo!

• FairOS-DFS

To setup the FairOS-DFS tools, You need two files: dfs-linux... and dfs-cli-linux... which
can be downloaded from https://github.com/fairDataSociety/fairOS-dfs. Please consult https://docs.fairos.
fairdatasociety.org/docs/fairOS-dfs/introduction for further information on customizing FairOS-DFS. FairOS-
DFS provides abstractions that facilitate the storage of fairly complex objects on Swarm so it depends on a
running Swarm node.

• Golem

Golem is needed to run compute pods, so please consult https://handbook.golem.network/requestor-tutorials/
flash-tutorial-of-requestor-development for an in-depth setup. The following provides a compressed version of
the official documentation.

1. Obtain Yagna, the dispatching engine of the Golem

curl -sSf https://join.golem.network/as-requestor | bash -

2. Make sure you have installed Yagna

yagna --version
gftp --version

3. Run the Yagna daemon

yagna service run

4. Open a new terminal tab/window, and create a new wallet named requestor

yagna app-key create requestor

5. Get to know your wallet/keys with

3

https://docs.ethswarm.org/docs
https://github.com/fairDataSociety/fairOS-dfs
https://docs.fairos.fairdatasociety.org/docs/fairOS-dfs/introduction
https://docs.fairos.fairdatasociety.org/docs/fairOS-dfs/introduction
https://handbook.golem.network/requestor-tutorials/flash-tutorial-of-requestor-development
https://handbook.golem.network/requestor-tutorials/flash-tutorial-of-requestor-development

Sovr, Release 0.1

yagna app-key list

Which outputs something similar to the following table

name key id ␣
→˓ role created

requestor 1c8c96a66950905baeb48014d7369ac6 ␣
→˓0xb2e10dacce97f932f1d03757ff33b443f17a1c5f manager 2022-10-
→˓06T13:45:04.897349774

Copy the key column’s value.

6. Fund your wallet with testnet tokens

yagna payment fund
yagna payment status

7. Enable the Yagna daemon as a requestor

yagna payment init --sender

8. Export the key for the requestor wallet as an environment variable

export YAGNA_APPKEY=1c8c96a66950905baeb48014d7369ac6

Just remember that you need to redo this step every time you start the Yagna server.

9. Initialize a virtual environment for python 3 and install necessary libraries.

python3 -m venv ~/.envs/venv
source ~/.envs/venv/bin/activate

pip install -U pip
pip install yapapi requests-toolbelt

And done!

Now that you have a working environment for Swarm, FairOS-DFS, and Golem, it is time to start using the Sovr CLI.

1.1.2 CLI

Before use Sovr CLI, you need to have a virtual environment set up and activated with required libraries, make sure
requests-toolbelts and yapapi are installed. To get the Sovr CLI, fork it from Github:

git clone https://github.com/rezahsnz/sovr.git

If you needed any help, just invoke Sovr CLI with --help argument:

usage: cli.py [-h] [--recipe RECIPE] [--persist-self]
[--persist | --fork FORK | --run | --import-pod IMPORT_POD | --list-pods | --

→˓generate-pod-registry]

4 Chapter 1. Contents

Sovr, Release 0.1

Sovr command line interface

optional arguments:

-h, --help show this help message and exit

--recipe RECIPE specify a recipe file

--persist-self Persist the CLI itself and make it public. Caution: remove any creden-
tials(password files, . . .) before proceeding.

--persist Persist pod to dfs

--fork FORK Fork a public pod, a reference key is expected

--run Run the pod/task

--import-pod IMPORT_POD Imports a pod to local filesystem, a pod name is expected

--list-pods List all pods

--generate-pod-registry Generate a new pod registry by looking into all pods

1.2 Compute Pods

1.2.1 Overview

Golem is a peer-to-peer compute marketplace where requestors(those who need to get some compute done) and
providers(those who provide their computer in exchange for $) are matched together in a decentralised way. A typ-
ical program on Golem is usually a set of payload(inputs), scripts, logs, and outputs with scripts controlling
the logic of the whole running session. Note however that this is a loose definition of a Golem program as there is no
such pre-defined structure and developers are free to layout their program files in any manner the wish and the layout
Sovr uses is only for the sake of tidiness.

A compute pod is a logical directory structure that contains directories and files representing a program that can be run
on Golem. To differentiate a compute pod from typical pods, recall that users might have other pods in their wallet too,
a .recipe file is stored at the root of the compute pods, e.g. /segmentation-job.recipe. A recipe is a json file
with the following look and feel:

{
"name": "blender",
"description": "Blender requestor pod that renders a .blend file.",
"version": "1.0",
"author": "reza",
"public": true,
"golem": {
"exec": "python3 script/blender.py",
"script": "script",
"payload": "payload",
"output": "output",
"log": "logs"

}
}

• name

1.2. Compute Pods 5

https://docs.fairos.fairdatasociety.org/docs/fairOS-dfs/introduction#pod--logical-drive

Sovr, Release 0.1

This property identifies the compute pod within the FairOS-DFS and thus should be unique for every compute
pod.

• description

A description of the objective of the compute pod

• author

The author of the compute pod

• version

Version number

• public

Whether the compute pod should be shared with others

• golem

Defines a Golem program

– exec

The command that starts a Golem session run

– script

The logic of the Golem program is out here

– payload

Defines the payload(input) of the Golem program

– output

The output of the Golem program

– log

The logs of any Golem session runs

1.2.2 What is a Compute Pod?

A compute pod is the main building block of the Sovr Protocol that provide an easy to use scheme to manage Golem
compute session. Compute pods can be run, persisted, shared, and forked by users in a decentralized way. This allows
them to be viewed as portable compute objects. Compute pods might experience various independent stages during
their lifetime:

• Running

A running compute pod is simply a Golem program. An example of running a compute pod via Sovr CLI is
shown below:

python src/cli.py --recipe src/templates/pods/blender/recipe.py --run

• Persisting

A compute pod can be saved(persisted) to the FairOS-DFS with the --persist option of Sovr CLI. When
persisting, if the public property of the recipe is set to True, the compute pod is also shared to the outside
world. An example of persisting is shown below:

python src/cli.py --recipe src/templates/pods/blender/recipe.py --persist

6 Chapter 1. Contents

Sovr, Release 0.1

• Forking

Forking is the opposite of persisting and as its name implies, brings a public pod to the user, allowing her to build
upon other people’s work. --fork option is employed to fork compute pods. an example of forking is shown
below:

python src/cli.py --fork 2cf98c3...23ee9a

Besides working with compute pods, Sovr CLI provides means to maintain the overall status of itself and compute pods.
--persist-self for example, persists a copy of Sovr CLI(the src/ directory) on Swarm and shares it as a measure
of redundancy. Another set of options revolve around the maintenance of compute pods with --list-pods providing
a list of current compute pods and --generate-pod-registry creating a registry of compute pods as users could
have several other pods too and it is important to track compute pods down.

Payload and output

The notion of payload is very important for a compute pod as it provides means to communicate with other compute
pods. A recipe defines what payload the compute pod expects. There are two types of payloads: internal, and external.
An internal payload is simply the set of local files stored in the directory defined by the payload property while an
external payload is a set of references to public pods. The following snippet shows an external payload:

"golem": {
.
.
.
"payload": [

{
"ref": "ej38b1...",
"data": "/data.zip"

},
{
"ref": "1a20fd...",
"data": "/jake/lime.zip"

},
.
.
.

],
},
.
.
.

},

As you can see the payload requires external resource stored on public pods that need to be forked before a compute
pod could use them. This is taken care of by the Sovr CLI when running a compute pod and stored in the payload/
external direcory. Once a compute pod is ready to be persisted, the recipe could ask for its output to be shared. An
example of a output sharing is given below:

"golem": {
.
.
.
"output": {

(continues on next page)

1.2. Compute Pods 7

Sovr, Release 0.1

(continued from previous page)

"share": "output/results",
},
.
.
.

},

The overall message of computes pod is simple yet powerful. Using compute pods, people can autmate things and
build on top of others’ work.

1.2.3 Tasks

A task is a set of independent compute pods loosely chained together to undertake a complex job. The following image
demonstrates a visual conception of tasks.

A task is defined in a json file(usually called recipe.json just in the case of compute pods) and has the following look
and feel:

{
"name": "some sequence",
"public": true,
"pods": [
"96dd1...59670",
"e3f8c...55eb4"

]
}

Where the pods property defines a list of compute pods that constitute the task. To run a task you can invoke the Sovr
CLI as below:

python src/cli.py --recipe foo/recipe.json --run

Running a task involves forking and running individual compute pods. After each compute pod is run, the contents
of the output is copied to the next compute pod’s payload/external directory, thus enabling dependency of compute
pods to each other. To get your feet wet with tasks, there is an example task in src/templates/tasks/ml/keras/
recipe.json where 5 images are sent to different pre-trained Keras models to be classified.

8 Chapter 1. Contents

Sovr, Release 0.1

1.2.4 Quick dive

To make this introduction to compute pods solid, an example is provided here that let’s you run and examine a compute
pod we have already persisted in Swarm.

1. Set up a user within the FairOS-DFS environment

We assume that FairOS-DFS tools are located at ./bee/ and our system’s architecture is the common 64-bit
“x86_64” known as amd64

• Open a terminal window and run(replace the postage block id Swarm gave you with foobar)

./bee/dfs-linux-amd64 server --postageBlockId "foobar"

• In another terminal tab/window, run

./bee/dfs-cli-linux-amd64

Now that you are inside the FairOS-DFS CLI, let’s create a user named sam or name it as you like

user new sam

Provide a password for sam and exit the FairOS-DFS CLI.

• Open your favourite text editor and write the following text in it then save it in the Sovr CLI’s src
directory(I hope you’ve already clonned Sovr CLI, if not please consult Usage) as creds.json.

{
"username": "sam",
"password": "sam's password"

}

2. Set Golem up as described here Usage

3. Fork, run, and persist a compute pod

While in the same terminal tab/window, make sure you are at Sovr CLI’s directory sovr and the virtual
environment you set up at Usage is activated.

• To fork a compute pod containing a XCeption Keras image classification model, run

python src/cli.py --fork␣
→˓a61d11e7335ed41e56494ae4bee5446f7785737938a35454e3190c5ccae283ea

Once the forking is complete, you would have XCeption directory at your current woking directory,
feel free to explore it.

• To run the forked XCeption compute pod, run

python src/cli.py --recipe ./XCeption/recipe.json --run

This will send your compute pod’s stuff to Golem nodes and once done, your compute pod’s results
are ready at XCeption/outupt along with any logs at XCeption/logs. For this specific com-
pute pod, the actual result is XCeption/output/preds.json which is the top 5 classes the model
thought the five input images are.

• If you are satisfied with the outputs or just interested in saving your compute pod on Swarm, run

python src/cli.py --recipe src/XCeption/recipe.json --persist

1.2. Compute Pods 9

Sovr, Release 0.1

If there are no harmless errors, you should get a message on the successful persistence of your com-
pute pod along with a sharing reference key if your recipe’s public property was True.

Congrats, you have completed your very first compute pod journey!

As an alternative to forking, there are some template compute pods and tasks in the src/templates directory, feel
free to examine them.

10 Chapter 1. Contents

	Contents
	Usage
	Prerequisites
	CLI

	Compute Pods
	Overview
	What is a Compute Pod?
	Payload and output

	Tasks
	Quick dive

